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Abstract

We consider nonlinear heat conduction satisfying a variational principle of Fermat type in the case of stationary

heat ¯ow. We review origins of a physical theory and transform it into a formalism consistent with irreversible
thermodynamics, where the theory emerges as a consequence of the theorem of minimum entropy production.
Applications of functional equations and the Hamilton±Bellman±Jacobi equation are e�ective when Bellman's

method of dynamic programming is applied to propagation of thermal rays. Potential functions describing minimum
resistance are obtained by analytical and numerical methods. For the latter, approximation schemes are developed.
Di�erences between propagation of thermal and optical rays are discussed and it is shown that while simplest
optical rays can be described by Riemmanian geometry, it is rather Finslerian geometry that is valid for thermal

rays. 7 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Consider a steady-state heat conduction in a rigid

solid. When a thermal ®eld is imposed by ®xing the

thermal gradient, the ¯ow of thermal energy can be
described in terms of `thermal rays', the paths of heat

¯ow determined by the direction of the temperature

gradient and nonlinear properties of the conducting
medium. When the thermal conductivity changes along

the length of a thermal ray, the path along which the

ray moves is, in general, curvilinear. Our purpose is

prediction of the shapes of thermal rays, regardless of
whether their curvilinearity is caused by the thermal in-

homogeneity or material inhomogeneity of the me-

dium. Here the thermal rays are shown to travel along
paths satisfying the principle of minimum of entropy

production which looks at ®rst glance quite di�erent

from the well-known Fermat principle of minimum

time (minimum optical length) for optical rays. How-
ever, taking into account that the minimum of entropy

production is associated with the minimum resistivity
of the path, it is easy to conclude that the minimum
resistivity causes (in the dual problem) the maximum

of heat ¯ux through the medium or makes the resi-
dence time of heat in the medium as short as possible.
This makes the principle for travel of thermal rays
quite similar to that for propagation of light [6]. Our

purpose is to investigate these phenomena by the
method of dynamic programming [1] showing the simi-
larities and di�erences between the optical and thermal

phenomena.

2. Thermodynamics and propagation of steady thermal

rays

Consider the entropy production functional describ-
ing the transfer of pure heat in a rigid solid under the

assumption that the thermodynamic Hamiltonian
vanishes, i.e. the rate dependent dissipation function F
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equals the state dependent dissipation function C: This
condition is associated with the requirement that an
entropylike function generated along the kinetic paths
is the true thermodynamic entropy which does not

explicitly contain the time t

Ss �
�t2
t1, v

Ls dV dt �
�t2
t1, v

�Fs �Cs � dV dt

�
�t2
t1, v

2Fs dV dt �
�t2
t1, v

rJ 2
q dV dt, �1�

where Fs � Cs [5]. The symbol r designates the reci-

procal of the well-known Onsager's coe�cient k for
the heat conduction. This reciprocal has the meaning
of the speci®c resistance for heat transfer, hence its

designation. The energy is transferred along the length
dl by the cross-section perpendicular to the heat ¯ux.
The perpendicular crosssection has the area A which

may change with l; the volume di�erential dV � A dl:
As distinguished from more standard treatments, we
integrate here over the volume V `moving with the

energy'; in this case, x and y are special Lagrange
coordinates and the heat ¯ow is attributed to motion
of the same portion of energy rather than to ¯ow
through a ®xed area in the space. We introduce the

heat current I � dQ=dt as the amount of the thermal
energy received by the system per unit time. The heat
Q is positive when it is added to the system. Then the

heat ¯ux densities satisfy Jq � dQ=Adt or Jq � I=A,
hence

Ss �
�t2
t1,v

r

�
dQ

Adt

� 2

dV dt �
�t2
t1, l

�rdl�
�

dQ

Adt

� 2

A dt

�
�t2
t1, l

�
r
A

dl

��
dQ

dt

� 2

dt: �2�

As r has the meaning of the speci®c thermal resistance,
the di�erential expression

dR � r
dl

A
�3�

de®nes the ®rst di�erential of the total resistance R.
The total resistance itself is the path integral

R �
�l2
l1

r
A

dl �4�

The quantity R increases with the total length l and
decreases with the cross-sectional area A. With this
de®nition, Eq. (2) can be transformed in to a popular

form that describes the generation of the Joule heat
within a conductor. Indeed, as shown by Eq. (5)
below, in the frame of the variable Q the entropy pro-
duction is

Ss �
�l2
l1

�
r
A

�
dl

�t2
t1

�
dQ

dt

� 2

dt �
�Q2

Q1

RI dQ

�
�Q2

Q1

ÿ
T ÿ12 ÿ T ÿ11

�
dQ �

�t2
t1

RI 2 dt �5�

This shows that the di�erence of thermal potentials

between the two subsystems 1 and 2,
DT ÿ1 � 1=T2 ÿ 1=T1, causes the ¯ow of the thermal
energy dQ � dQ2 along the total resistance R to heat

the subsystem 2. The Ohm's law for heat conduction
holds in the form

I � ÿdQ1

dt
� dQ2

dt
� DT ÿ1

R
� T ÿ12 ÿ T ÿ11

R
�6�

At the steady state

Ss �
�Q2

Q1

ÿ
T ÿ12 ÿ T ÿ11

�
dQ �

�t2
t1

RI 2 dt

� ÿT ÿ12 ÿ T ÿ11

�
Q �7�

Note that for an unsteady state process, when two
bodies exchange heat and the system is isolated as the

Nomenclature

A variable area perpendicular to heat ¯ow
A0 constant area of transfer projected on axis

y

c bending constant for a thermal ray
H Hamiltonian function
I heat current through the area A

k Onsager's conductivity related to gradient
of Tÿ1

l length parameter

n refraction coe�cient
p momentum type integral, @R=@y
R total resistance of thermal path

R�x, y� minimum resistance potential
Ss entropy generated during a ®nite period of

time

T temperature
t time
W N optimized performance function

r thermal resistance as reciprocal of Onsa-
ger's conductance k

x direction perpendicular to the resistivity

gradient
y direction tangent to the resistivity gradient
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whole, the correct result is one half of the expression
given in Eq. (7). This is because in the unsteady state

process the heat current I is not constant in time but
decreases gradually to zero. Here, however, we are
interested in the steady-state behavior for which the

constancy of I along the path holds.
On the other hand, another transformation of Eq.

(2) shows that the entropy production during the time

Dt � t2 ÿ t1 can be expressed in the form

Ss �
�t2
t1

�t2
t1

�
r

dl

A

��
dQ

dt

� 2

dt

� �t2 ÿ t1 �
�t2
t1

ÿ
rI 2Aÿ1

�
dl, �8�

Thus, the steady intensity of the entropy generation or
Ss per unit time can be written as

Ps � Ss

t2 ÿ t1
�
�l2
l1

ÿ
rI 2Aÿ1

�
dl �

�l2
l1

P dl, �9�

where, by de®nition,

P � rI 2Aÿ1, �10�
plays formally the role of a momentum type quantity.

Even usual units of momentum (kgm/s) can be
assigned to P, after multiplying it by a suitable con-
stant. This can be done by noting that the power of

the entropy produced Ps in Eq. (9) can be expressed in
units of the entropy itself by multiplying this equation
by a time constant t 0 � h/mc2, where h is Planck's

constant, c is light speed and m is the mass of the mol-
ecule in the solid system

Ps � Ssh

Dtmc 2
�
�l2
l1

�
rI 2h

Amc 2

�
dl �

�l2
l1

Ph

mc 2
dl: �11�

This quantity, in turn, can be expressed in units of
action, after multiplying it by h=kB, where kB is the

Boltzmann constant. Consequently, the thermal action
�h=kB�Ps takes the form of an integral representative
to variational principles of Mapertuis±Fermat type

A � Ssh
2

Dtmc 2kB

�
�l2
l1

�
rI 2h 2

Amc 2kB

�
dl �

�l2
l1

p dl, �12�

where

p � Ph 2

mc 2kB

� rI 2h 2

Amc 2kB

�13�

is the `thermal momentum' in the usual units, kg m/s.
We stress that A is the area of the crosssection perpen-
dicular to the ¯ow. The variational principle is

d
�l2
l1

�
rI 2h 2

Amc 2kB

�
dl � d

�l2
l1

p dl � 0: �14�

Certain speci®c coordinates x and y are usually applied
to describe the problem; in this case

d
�l2
l1

p dl � d
�l2
l1

p�x, y, u�
� ��������������

1� u 2
p �

dx � 0, �15�

where u � dy=dx is the slope of the tangent to the
path. In this reference frame the local resistivity of
heat ¯ow changes along the axis x, the axis y is tan-

gent to a surface of constant resistivity r � C and u �
dy=dx is the local direction of the gradient of tempera-
ture reciprocal Tÿ1.

3. Mechanical and optical analogies

It is essential that various speci®c forms of the func-

tion p�x, y, u� may refer to diverse physical phenom-
ena. For mechanical motions with p � mv and the
energy conservation in the form

�1=2�mv 2 � V�x, y� � h, one obtains
p � �2m�hÿ V�x, y���1=2; in this case p is independent
of u and the variational equation can be rewritten in

the form

d
�l2
l1

p dl � d
�x 2

x 1

��������������������������������������������������
2m
ÿ
hÿ V�x, y�

��1� u 2 �
q

dx

� 0: �16�

In the simplest (homogeneous) case of optical phenom-
ena p may also be independent of u. However, in ther-
mal phenomena p, Eq. (13), includes the perpendicular

cross-section A, thus p may inherently change with u �
dy=dx depending on how A varies along the path. We
shall see this later as we now shall focus on the light
propagation, where the transition time between two

points may be described by an (inhomogeneous) func-
tional

t � tÿ t0 �
�x
x 0

v�y, x�ÿ1
��������������
1� u 2

p
dx, �17�

which contains the actual propagation speed v in the
denominator. When this equation is multiplied by the
light speed in vacuum, c0, it takes the form expressing
the optical length X

X � c0t � c0�tÿ t0 � �
�x
x 0

n�y, x�
��������������
1� u 2

p
dx, �18�

where n � c0=v is the refraction coe�cient. Due to the
obvious analogy between Eqs. (16) and (18), one can
restrict further analysis of the mechanical case and the

homogeneous optical case to the latter function. The
Euler±Lagrange equation is��������������
1� u 2

p @n

@y
ÿ d

dx

�
nu��������������
1� u 2
p

�
� 0: �19�
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This equation admits a simple and important interpret-
ation. If the tangent to the extremal makes the angle a
with the axis x, then

dy

dl
� dy����������������������

dx 2 � dy 2
p � u��������������

1� u 2
p � sin a: �20�

Eq. (20) is then reduced to

@n

@y
ÿ d

dl
�n sin a� � 0: �21�

This equation describes a geometrical property of the

extremal path, which is independent of the choice of
axes. Therefore, its interpretation can use any con-
venient system of axes. As n depends on x and y only,

the equation n = constant is that of the plane curve
and by varying the constant we obtain a family of the
curves, the so-called level curves. If O is point on the

extremal, let us take it as the origin and the normal
and tangent to the level curve through O as the x and
y axes respectively. Now at O the tangent to the curve
n = constant is perpendicular to the axis x, hence

�@n=@x�=�@n=@y� must be in®nite and so @n=@y � 0:
Eq. (21) then becomes the Snell (sine) law of refraction
for continuous systems

n sin a � constant �22�
which holds for all points along the extremal. This
equation is not restricted to the optical case. It is easy
to see that in the mechanical case the level curves are

given by �hÿ V �1=2 � constant, and, as this is equival-
ent to V = constant, the level curves are curves of the
constant potential energy. The condition �hÿ
V �1=2sin a � constant holds in this case, where
�1=2�Pÿ a is the angle at which tangents to two
curves, the level curve and the extremal, intersect.

4. Boundary conditions and tangent law of bending for

thermal rays

Consider now which of the above properties cease
to be valid in the case of thermal rays. The inte-
gration is made along the trajectory of the heat

¯ow, a `thermal ray'. Because the thermal energy in
a rigid solid is a conserved quantity, the energy
¯ux I is constant in a steady state heat conduction.
In this case, as shown above by Eqs. (9) or (14),

the general principle of the entropy production has
the special form of a variational principle of
Mapertuis±Fermat type. As it is well-known from

analytical mechanics, a principle of least action type
must hold in this case and an energylike quantity
must be constant along the ray. In the considered

case this requirement is satis®ed by constancy of
the thermodynamic Hamiltonian, F±C:
Since the units of the entropy produced Ss are J

Kÿ1, the units of the quantity p are J Kÿ1 mÿ1, con-
sistent with units of the speci®c resistance r, Kÿ1 Jÿ1

ms, resulting from the heat conduction law in Onsa-
ger's form, rJ � grad T ÿ1: Correspondingly, the total

resistance R has units Kÿ1 Jÿ1 s in agreement with Eq.
(3). Thus the product RI has units Kÿ1, consistent
with the fact that this product represents the tempera-

ture reciprocal in agreement with Ohm's law for heat,
Eq. (6). The product rdQ=dA has units Kÿ1 mÿ1 s.
A variational principle of Mapertuis±Fermat type

was constructed by Keizer [5] for Onsager's model in
the abstract con®guration space of the variables a,
which are even with respect of the time reversal. Here,
however, the variational principle works in the physical

space x, y, z of our real word, thus the problem is phy-
sically more interesting than that in the abstract space.
Here we consider heat ¯ux as ``rays'', for which a

sort of refraction law can be formulated in an inhomo-
geneous medium in which the thermal conductivity
changes with position. The appropriate way to show

that a sort of refraction law exists was found by Tan
and Holland [13] who have shown the essential role of

the boundary conditions for heat ¯ow through a dis-
continuous surface at which the heat conductivity has
a jump, and derived the so-called tangent law of

refraction. In particular, the surface of discontinuity
may be an interface separating two phases; the Onsa-
ger's conductivity in the ®rst phase is k1 and that in

the second phase is k2. The tangent law is di�erent
from Snell's law of refraction for waves, with the tan-

gents of the angles of incidence and refraction re-
placing the sines and the reciprocal of the Onsager's
conductivity taking the place of the refractive index.

The tangent law is known for the electric ®eld intensity
at the boundary between two dielectrics; again the tan-
gents of the angles of incidence and refraction replace

the sines in Snell's law. The same tangent law of
refraction should also apply to potential ®elds in gen-

eral.
When the number of phases (the stages with con-

stant heat conductivity) tends to in®nity, a continuous

problem can be stated. We conveniently assume that
the heat conductivity is a function of x only; then the

axis x is perpendicular to the parallel surfaces of con-
stant conductivity. The assumption of parallel surfaces
of constant k is not really restrictive, because over a

small enough area any smooth surface can be regarded
as locally ¯at. When the original system is now rotated
about the axis x until the thermal ray starts in the x±y

plane, then the physics does not change, that is, it
must, by symmetry remain in this plane. This means

that a two-dimensional analysis is allowed. The heat
rays travel along the direction of the negative gradient
of temperature, perpendicular to the isothermal sur-

faces. Our reference frame is such that the vector of
the temperature gradient lies in the plane x±y and the

S. Sieniutycz / Int. J. Heat Mass Transfer 43 (2000) 3453±34683456



surfaces of constant k are represented by the lines x =
constant.

Let us describe several cases in which tangent law
boundary conditions hold. First, the boundary con-
ditions at the surface separating two isotropic dielec-

trics must be consistent with the condition rot E � 0
which requires, for an isotropic homogeneous surface,
the continuity of the tangential component, E1t � E2t

(indices 1 and 2 refer to phase 1 and phase 2). Second,
the boundary conditions must be consistent with the
condition div D � 0 or div�eE� � 0; this requires the

continuity of the normal component of D otherwise
the divergence could not vanish. Thus the condition is
e1E1n � e2E2n: Analogous boundary conditions hold
for electric conductors. The analogy follows from the

fact that, for conductors, the ®rst condition, rot E � 0,
holds same for dielectrics, whereas the second con-
dition div�sE� � 0, di�ers from its static counterpart

only by the presence of the electric conductivity s
replacing the dielectric constant. Thus, for electric con-
ductors, the second boundary condition is s1E1n �
s2E2n:
Quite generally, for potential ¯ows, the tangent com-

ponent of the intensity �E, grad P, grad T, etc.) is con-

tinuous across the interface, E1t � E2t: The normal
component of the same intensity may have a jump
resulting from di�erent transport conductivities,
s1E1n � s2E2n: On the other hand, these boundary re-

lations can be expressed in terms of the conserved
¯uxes j; in this representation the tangent components
have jumps, jt1=s1 � jt2=s2, and the normal com-

ponents are continuous, jn1 � jn2: Also, we can express
these conditions in terms of the potential f such that
E � grad f; in this representation, for a homogeneous

interface the continuity condition for the tangent com-
ponent of E is equivalent to the continuity of f itself;
thus

f1 � f2, �23�

s1
@f1

@n
� s2

@f2

@n
: �24�

Following Tan and Holland [13], but working in the
entropy representation as the only correct one for the
energy transfer, we shall derive the tangent law of
refraction for heat conduction from the boundary con-

ditions of the temperature continuity and the energy
conservation at the interface. We assume the steady
state heat conduction through a smooth interface with-

out interfacial thermal resistance and with no heat
sources or sinks. Under these conditions the tempera-
ture will be continuous across the interface and no

question of re¯ection arises because the ray direction
at each point is uniquely determined by that of the
temperature gradient. In Fig. 1, a1 and a2 are respect-

ively the angles of incidence and refraction, whereas k1
and k2 are the Onsagerian conductivities of the two

media. For an interface characterized by good thermal
contact between the media, that is, by temperature
continuity across the interface, the boundary con-

ditions can be written as

jrT ÿ1j1sin a1 � jrT ÿ1j2sin a2 �25�
for the tangent component and

k1jrT ÿ1j1cos a1 � k2jrT ÿ1j2cos a2 �26�
for the normal component in absence of sources and
sinks of heat. The law of the refraction for heat con-

duction rays follows as a ratio of these equations

r1tan a1 � r2tan a2 �27�
where r � 1=k is the Onsagerian thermal resistivity.
This is analogous to Snell's law with the tangent repla-

cing the sine and the thermal resistivity replacing the
refractive index; the law was originally formulated
with the reciprocal of usual thermal conductivity l [13]

which we, however, attribute here to the reciprocal of
Onsagerian conductivity k as the more proper quantity
than l because of the basic link of the former with the

entropy production.
Examining the deviation of the refracted ray from

the incident ray, it is convenient to introduce the rela-
tive thermal resistivity of the second medium with

respect to the ®rst; b � r2=r1: In terms of b and the
angle of incidence, a1, the angle of refraction is

a2 � arctan�tan a1=b� �28�
whereas the angle of deviation of the re¯ected ray, D �
a2 ÿ a1 satis®es the equation

D � a2 ÿ a1 � arctan�tan a1=b� ÿ a1: �29�
Tan and Holland [13] obtained ®gures showing the

angles of refraction, a2, and deviation, D, as functions
of the incidence angle a1 and the resistivity ratio, b �
r2=r1: The case b > 1 is the optical analog of refrac-

tion from the rarer to the denser medium, and in-
versely. In contrast to Snell's refraction law in optics,

Fig. 1. Illustration of Fermat principle for heat conduction.
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where the deviation D decreases monotonically with
the incidence angle a1, in the tangent law case the devi-

ation attains an extremum and approaches zero for
both grazing and normal incidences, a1 � 0 and
a1 � 908, respectively. In the limit as b tends to zero,

the refraction angle a2 approaches 908 which means
that heat ¯ux entering a perfect thermal conductor is
parallel to the interface. Otherwise, as b tends to in®n-

ity, the refraction angle a2 becomes zero, which means
that heat ¯ux entering a perfect thermal insulator must
be perpendicular to the interface.

The speci®c resistance r, Kÿ1 Jÿ1 m s, resulting
from the heat conduction law in Onsager's form, rJ �
grad T ÿ1 can be connected with the usual heat conduc-
tivity l: Since the Fourier law must hold,

T 2rJ � ÿgrad T, the thermal resistance r used here
can be evaluated on the basis of the thermal conduc-
tivity data; r � T ÿ2lÿ1: The corresponding total re-

sistances: R1 � r1l1=A1 and R2 � r2l2=A2 (those of the
entropy representation) de®ned in analogy with the
electric resistance, have units Kÿ1 Jÿ1 s. Here A1 and

A2 are the cross-sectional areas of a ``tube'' of the heat
¯ux in the medium 1 and 2, respectively. The products
R1I and R2I have units Kÿ1, consistent with the fact

that these products represents the di�erences of the
temperature reciprocals, DT ÿ11 and DT ÿ12 , in the two
media.
We shall now show the essential role of the area per-

pendicular to the transferred heat ray on the tangent
law of heat bending. In Fig. 2 the heat ¯ux travels
between two ®xed points, 1 and 2. If A0 is the constant

area of a ¯ux tube intercepted by the interface (the
constant area of projection of the heat ¯ux tube cross-
sectional area on the surface of constant resistivity),

then the cross-sectional areas of the ¯ux tubes in the
two media are

A1 � A0cos a1, A2 � A0cos a2: �30�
Thus, the total thermal resistance between the points 1

and 2 is

R1, 2 � r1l1
A1
� r2l2

A2
� 1

A2

�
r1l1

cos a1
� r2l2

cos a2

�
: �31�

Substituting the values of cos a1 and cos a2 in this
equation from Fig. 1, as

cos a1 � a1����������������
a 2
1 � y 2

q , cos a2 � a2�����������������������������
a 2
2 � �Lÿ y� 2

q �32�

and the lengths l1 and l2 as

l1 �
����������������
a 2
1 � y 2

q
, l2 �

�����������������������������
a 2
2 � �Lÿ y� 2

q
�33�

one obtains

R1, 2 � 1

A0

 
r1
ÿ
a 2
1 � y 2

�
a1

� r2
ÿ
a 2
2 � �Lÿ y� 2

�
a2

!
: �34�

We stress that it is the vertical coordinate y of the
intersection point with the interface which is allowed
to vary in our case. This is because the location of the

intersection point of the thermal ray with the interface
may occur for various vertical coordinates y while the
horizontal coordinate x of that point is always con-

stant and equal to a1. Since y=a1 � tan a1 and
�Lÿ y�=a2 � tan a2, the condition requiring the ®rst de-
rivative dR1, 2=dy to vanish

dR1,2

dy
� 2

A

�
r1y
a1
ÿ r2�Lÿ y�

a2

�
� 0 �35�

is equivalent with the requirement that the tangent

law, Eq. (27), is satis®ed. Di�erentiating Eq. (35) with
respect to y once again, we obtain

d 2R1, 2

dy 2
� 2

A

�
r1
a1

�
> 0 �36�

which proves the minimum property of R1, 2 at the

stationary point.
Consequently the postulate that the heat ¯ux follows

the trajectory of the least resistance is the correct
physical principle that leads to the tangent law (27),

the consequence of the boundary conditions (25) and
(26). Along with the continuity of the normal com-
ponent for a heat vector H, satisfying div H � 0,

re � div D, or Ð in the steady state Ð div J � 0, the
conditions implying the tangent law, Eqs. (25) and
(26), may be seen as the consequence of the energy

conservation and the principle of least resistance. As
the latter is incorporated in the theorem of the least
entropy production, we can regard Eqs. (25) and (26)
as those stemming from the minimum entropy pro-

duction applied to the conserved heat ¯ux.

5. Continuous medium and tangent law of bending for

thermal rays

Let us consider now the continuous medium with

Fig. 2. Decrease in the area A1 perpendicular to the trans-

ferred heat ray with the increasing di�erence between thermal

conductivities k1 and k2, at constant k2.
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the variable thermal resistivity which is described by
Eq. (14). We work again in the entropy representation.

In our system, the surfaces of constant thermal resis-
tivity are planes perpendicular to the axis x, i.e. the
thermal resistivity is a continuous function of x only.

Let us imagine that we rotate the system about the
axis x until the gradient of the temperature reciprocal
is parallel to the x±y plane. A set of ¯ux tubes with

¯owing energy can be de®ned as in the discrete pro-
blem described above. While in the discrete problem in
the entropy representation the total resistances are

R1 � r1l1=A1 and R2 � r2l2=A2, in the continuous
problem these relations are represented jointly by the
single local relationship, R � rAÿ1dl, in which A is the
variable cross-sectional areas of a ``tube'' of the heat

¯ux perpendicular to the ¯ow in a inhomogeneous
medium. The products R1I and R2I have units Kÿ1

and describe the di�erences in the temperature recipro-

cals.
Again we test the postulate that the path of the heat

¯owing between two ®xed points 1 and 2 is that along

which the total thermal resistance is minimum. As in
the discrete problem, A � A0cos a, where A0 is the con-
stant (x-independent) area of the ¯ux tubes intercepted

by the interface. The variable cross-sectional area of
the ¯ux tube in the medium is described by a continu-
ous counterpart of Eq. (30)

A � A0cos a �37�
(see Fig. 2) whereas the incidence angle varies with x

according to the formula

cos a � dx

dl
� dx����������������������

dx 2 � dy 2
p �38�

In the above equations a is the angle between the ther-
mal gradient (or the thermal ray) and a normal to the
planes of constant resistivity. Eqs. (14), (37) and (38)

then imply the formulation

d
�l2
l1

r
A

dl � d
�l2
l1

r�x�
A0cos a

dl

� d
�x 2

x 1

r�x�
����������������������
dx 2 � dy 2

p
A0 dx=

����������������������
dx 2 � dy 2

p � 0 �39�

which describes the vanishing variation for the func-
tion of total resistance de®ned as

R1, 2 �
�t2
t1

 
r�x�

ÿ
dx 2 � dy 2

�
A0 dx 2

!
dx

�
�x 2

x 1

Aÿ10 r�x�
ÿ
1� �dy=dx� 2

�
dx � 0: �40�

A comparison of Eqs. (15) and (40) proves that in the
thermal case the function p�x, y, u� of Eq. (15) has the

form

p�x, y, u� � Cr�x�
��������������
1� u 2

p
, �41�

where C is a constant. The dependence of p on u is

caused by the change of the area A perpendicular to
the ¯ow with x, as shown in Fig. 2. It is Finslerian
rather than Riemmanian geometry which describes

well problems of this sort [4].

6. Continuous problem of bending as an optimal control

problem

However, in this work, the thermal problem will be
regarded as an optimal control problem for the mini-

mum of the resistivity integral

min

�x 2

x 1

Aÿ10 r�x�
ÿ
1� u 2

�
dx �42�

subject to the control u de®ned by the simple state

equation

dy

dx
� u: �43�

Eq. (42) contains the Lagrangian type integrand, l0, in
which x is the independent variable and which does
not contain explicitly the state variable y.

Now, according to a general procedure for vari-
ational problems [8,7,2] we consider the minimal resist-
ance function

R
ÿ
xi, yi, x f, y f

�
� min

(�x f

x i

l0�x, y, u� dx
)

� min

�x f

x i

Aÿ10 r�x�
ÿ
1� u 2

�
dx �44�

in terms of ®nal states and times. The Hamilton±Bell-

man±Jacobi equation (HJB equation) for the above
functional follows in the form

@R

@x
�max

u

�
@R

@y
uÿ Aÿ10 r�x�

ÿ
1� u 2

��
� 0: �45�

For the unconstrained control u, this is equivalent with
the two equations

@R

@x
� @R
@y

uÿ Aÿ10 r�x�
ÿ
1� u 2

�
� 0 �46�

and

@R

@y
ÿ 2Aÿ10 r�x�u � 0: �47�

Substituting into the ®rst equation for the derivative

@R=@y its value obtained from the second equation
and then eliminating R from the two equations by
comparison of the mixed second order derivatives
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yields the Euler±Lagrange equation

d

dx

@r�x�
ÿ
1� �dy=dx� 2

�
@ �dy=dx� � @r�x�

ÿ
1� �dy=dx� 2

�
@y

�48�

which, in view of the y-independent l0, simpli®es to the

relationship

d

dx

ÿ
2r�x��dy=dx�� � 0 �49�

or, since dy=dx � tan a

r�x�tan a�x� � c, �50�
where c is a constant. This is the tangent law of bend-
ing for an inhomogeneous medium in which the ther-
mal resistivity is a function of x. Eq. (50) extends the

discrete Eq. (27) to continuous systems.
Since the equation of an extremal is a second order

di�erential equation, its solution depends on two inte-

gration constants. When the function r�x� is known,
variables in Eq. (49) can be separated. Integration
between an initial point (x 0, y 0) and an arbitrary ®nal
point (x, y ) yields the general integral

y � y0 � c

�x
x 0

dx 0

r�x 0 � , �51�

where the integration constants are c and y 0. Follow-
ing Tan and Holland [13] we consider the case when
the thermal resistivity increases exponentially with x

r�x� � r0exp�gx�: �52�
When the solution between the points (x 0, y 0) and (x,
y ) is considered, Eq. (51) yields

y � y0 � c

r0

�x
x 0

dx 0

exp�gx 0 � �
c

gr0
ÿ
1ÿ exp� ÿ gx�� �53�

and

dy

dx
� c

r0
exp� ÿ gx�: �54�

In the above equations the ratio c=r0 is the initial
slope �dy=dx�0 at the point (x 0, y 0). The latter

equation shows that the slope of the heat ray decreases
exponentially with x, thus turning toward the direction
of the resistivity gradient. Indeed, in order to minimize
the total resistance, the ray spanned between two given

points must take the shape that assures that its rela-
tively large part resides in the `rarer' region of the
medium. This is in agreement with the tangent law of

refraction from a rarer to a denser medium. Eq. (53)
proves that as x tends to in®nity, y approaches the
asymptotic value c=�gr0�: For an in®nite ratio r0=c, or
for the vanishing initial slope �dy=dx�0, we obtain y �
0 and dy=dx � 0 for all x. In this case a thermal ray
initially in the direction of the resistivity gradient

propagates undeviated. Otherwise, considering the
inverted form of Eq. (53)

x � ÿgÿ1ln

�
1ÿ gr0y

c

�
�55�

and Eq. (54) we conclude that if r0c � 0 then x and
dx/dy are zero for all y. This means that a ray perpen-

dicular to the resistivity gradient (tangent to a surface
of the constant resistivity) also propagates undeviated.
This is consistent with the discrete tangent law of
refraction formulated above, but, as ®rst pointed out

by Tan and Holland [13], this is alien to Snell's law
because in geometrical optics a ray always bends
toward the gradient of the index of refraction [6].

In an opposite case, the thermal resistivity can be an
exponentially decreasing function of x

r�x� � r0exp� ÿ gx� �56�

the corresponding fomulae follow from the previous
ones when g is replaced by ÿg: (53) and (54) take re-

spectively the form

y � y0 ÿ c

r0

�x
x 0

dx 0

exp� ÿ gx 0 � �
c

gr0
ÿ
exp�gx� ÿ 1

� �57�

and

dy

dx
� c

r0
exp�gx�: �58�

The slope of the heat ray increases exponentially with
x, bending away from the direction of the initial slope
�dy=dx�0 � c=r0: This is in agreement with the tangent

law of refraction from a denser to a rarer medium. In
this case there is no asymptotic value of y. For the
vanishing initial slope c=r0 we obtain y � 0 and

dy=dx � 0 for all x which means that a thermal ray in-
itially in the direction of the resistivity gradient propa-
gates undeviated. Otherwise, considering the inverted

form of Eq. (57) and (58) we conclude that if the initial
slope is in®nite �r0=c � 0� then x and dx/dy are zero
for all y. This means that a ray perpendicular to the

resistivity gradient (tangent to a surface of the constant
resistivity) also propagates undeviated. Again, while
this is consistent with the tangent law, it is alien to
Snell's law, as in geometrical optics a ray always bends

toward the gradient of the index of refraction. These
properties hold quite generally for all potential ¯ows,
where the tangent component of the intensity (E, grad

P, grad Tÿ1, etc.) is continuous across a surface of
constant resistivity, E1t � E2t, whereas the normal
component of the same intensity exhibits a jump

resulting from di�erent conductivities, s1E1n � s2E2n:
From Eq. (45) the Pontryagin's Hamiltonian of the

problem satis®es the HJB equation
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H � ÿpx � max
u

n
pyuÿ Aÿ10 r�x�

ÿ
1� u 2

�o
: �59�

Using in this result Eqs. (46) and (47) with u � dy=dx
yields

@R

@x
� 2Aÿ10 r�x�u 2 ÿ Aÿ10 r�x�

ÿ
1� u 2

�
� @R

@x
� Aÿ10 r�x��u 2 ÿ 1� � 0 �60�

whence the extremum Hamiltonian in terms of the dy/
dx is

H � ÿpx � Aÿ10 r�x��u 2 ÿ 1�

� Aÿ10 r�x�
 �

dy

dx

� 2

ÿ1
!
: �61�

Since the speci®c resistance r and hence the process
Lagrangian depend on x, this Hamiltonian is not con-

stant along the extremal path. However, if r is inde-
pendent of x the Hamiltonian becomes constant and
the family of extremal paths is represented by the bun-
dle of straight lines

dy

dx
�2

ÿ
1�HA0=r0

�1=2
: �62�

Yet a ®rst integral exists without the above restriction,

since the Lagrangian is independent of y. This means
that p � @R=@y is constant along the extremal path,
that is, from Eq. (47)

@R

@y
� 2Aÿ10 r�x�dy

dx
� 2Aÿ10 c: �63�

As dy=dx � tan a this is equivalent to the tangent law
of refraction, Eq. (50),

r�x�tan a�x� � c, �50�
Hence, the function of the optimal resistivity has the
structure

R�x, y� � Aÿ10

ÿ
2cy� f�x��: �64�

From Eq. (47) the optimal deviation function u �
dy=dx is

u � A0

2r�x�
@R

@y
: �65�

Its substitution in Eq. (46)

@R

@x
� @R
@y

uÿ Aÿ10 r�x�
ÿ
1� u 2

�
� 0 �46�

yields the Hamilton±Jacobi equation for the extremals
of the problem

@R

@x
� Aÿ10 r�x�

 �
A0

2r�x�
@R

@y

� 2

ÿ1
!
� 0: �66�

The optimal resistivity function, Eq. (64), implies that
rR=ry � 2cAÿ10 ; with this result Eqs. (64) and (66)
yield an equation for the unknown function f(x )

@R

@x
� Aÿ10 r�x�

 �
c

r�x�
� 2

ÿ1
!

� Aÿ10

df�x�
dx
� Aÿ10 r�x�

 �
c

r�x�
� 2

ÿ1
!
� 0 �67�

which can be simpli®ed to the form

df�x�
dx
� r�x� ÿ rÿ1�x�c 2: �68�

Therefore the function f is obtained in the form of the
integral

f�x� �
�x
0

�
r�x 0 � ÿ rÿ1�x 0 �c 2

�
dx 0 � f�x 0 �, �69�

where f �x 0� � 0, in order to satisfy the initial condition
R�x 0, y0� � 0 for the extremal function (64). Hence the

potential function describing the minimum resistance is

R�x, y� � Aÿ10

�
2cy�

�x
0

�
r�x 0 � ÿ rÿ1�x 0 �c 2

�
dx 0

�
:

�70�

For the exponential resistivity law, Eq. (52),

r�x� � r0exp�gx� �52�

the potential function R�x, y� is

R�x, y� � Aÿ10

�
2cy�

�x
0

h
r0exp

ÿ
gx 0

�
ÿ
ÿ
r0
�ÿ1

c 2exp
ÿÿ gx 0

�i
dx 0

�
� Aÿ10

�
2cy� gÿ1r0

�
exp�gx� ÿ 1

�
� gÿ1

ÿ
r0
�ÿ1

c 2
�
exp� ÿ gx� ÿ 1

��
: �71�

When Eq. (56) holds, the above formula should con-
tain ÿg in place of g:
Let us verify if the obtained function R in Eq. (71),

satis®es the HJB equation, Eq. (45), or the related
Hamilton±Jacobi equation, Eq. (66). The ®rst partial

derivative, p � @R=@y � 2cAÿ10 , in agreement with
Eqs. (47) and (63). The second derivative, px � @R=@x,
is
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@R

@x
� Aÿ10

df�x�
dx
� Aÿ10 r�x� ÿ Aÿ10 rÿ1�x�c 2

� Aÿ10 r0exp�gx� ÿ Aÿ10

ÿ
r0
�ÿ1� ÿ gx�c 2: �72�

Substituting these derivatives into the left-hand side of

the Hamilton±Jacobi equation for our problem, Eq.
(66), yields zero as

LHB � Aÿ10 r0exp�gx� ÿ Aÿ10

ÿ
r0
�ÿ1

exp� ÿ gx�c 2

� Aÿ10 r0exp�gx�
 �

c

r0exp�gx�
� 2

ÿ1
!
� 0:

�73�

Thus the Hamilton±Jacobi equation is satis®ed. Fur-
thermore, substituting these derivatives into the left

hand side of the HJB equation of the problem, Eq.
(45), yields an expression

LHBJ � Aÿ10 r0exp�gx� ÿ Aÿ10

ÿ
r0
�ÿ1

exp� ÿ gx�c 2

�max
u

n
2cAÿ10 uÿ Aÿ10 r0exp�gx�

ÿ
1� u 2

�o
: �74�

The maximum in the above expression corresponds to
u satisfying the equation

u � crÿ1�x� � c
ÿ
r0
�ÿ1

exp� ÿ gx� �75�
in agreement with Eqs. (50), (52) and (63). The second
derivative of the maximized expression with respect to
u is negative, hence the maximum occurs. Using the

extremal u, Eq. (75), in Eq. (74) yields

LHBJ � Aÿ10 r0exp�gx� ÿ Aÿ10

ÿ
r0
�ÿ1

exp� ÿ gx�c 2

� 2c 2Aÿ10

ÿ
r0
�ÿ1

exp� ÿ gx� ÿ Aÿ10 r0exp�gx�

ÿ Aÿ10 r0exp�gx�
h
c
ÿ
r0
�ÿ1

exp� ÿ gx�
i 2
� 0:

�76�

This proves that the obtained function R�x, y�, Eq.
(71), satis®es the HJB equation of the problem, Eq.
(45). See Rund [9] for a comprehensive discussion of
connection between the variational calculus and

Hamilton±Jacobi theory.

7. Summary of results for continuous problem of

thermal rays

Before passing to the discrete formulation we will

recapitulate results obtained until now putting them
sometimes in a suitable modi®ed form. The theory of
traveling thermal waves involves an optimal control

problem for the minimum of the resistivity integral

W N �
�t2
t1

Aÿ10 r�x�
ÿ
1� u 2

�
dx �42�

subject to the control u de®ned by the state equation

dy

dx
� u �43�

The minimal resistivity function of the continuous

problem de®ned as

R
ÿ
xi, yi, x f, u f

�
� min

�t2
t1

Aÿ10 r�x�
ÿ
1� u 2

�
dx �44�

satis®es the HJB equation

@R

@x
�max

u

�
@R

@y
uÿ Aÿ10 r�x�

ÿ
1� u 2

��
� 0: �45�

Extremizing the Hamiltonian in the above HJB
equation yields as an optimal control

u � A0

2r�x�
@R

@y
: �65�

This optimality condition can be written in the form of

the tangent law of bending for a thermal ray

r�x�dy
dx
� 1

2
A0
@R

@y
� c, �50�

where c may be both positive or negative constant.

The constancy of the partial derivative @R=@y follows
from an explicit independence of the model Lagrangian
with respect to y. A suitable integral formula for the

bending constant in terms of the deviation yÿ y0 is

c �
ÿ
yÿ y0

�� �x
x 0

rÿ1�x 0 � dx 0
�ÿ1

: �51�

Expressing the optimal control u in the HJB equation
in terms of p � @R=@y yields the Hamilton±Jacobi
equation for the continuous problem

@R

@x
� Aÿ10 r�x�

 �
A0

2r�x�
@R

@y

� 2

ÿ1
!
� 0 �66�

where the second term of the left-hand side expression
is the optimal Hamiltonian. The solution to this
equation can always be broken down to quadratures.

Using the separation of variables the potential function
describing the minimum resistance follows in the form

R�x, y, c� � Aÿ10

�
2c
ÿ
yÿ y0

�
�
�x
x 0

br�x 0 �

ÿ rÿ1�x 0 �c 2e dx 0
�
: �70�

It may be veri®ed that the above function satis®es
both HJB equation (45) and Hamilton±Jacobi
equation (66). However if the function of speci®c resis-

tivity r�x� is too complicated the resulting integrals
cannot be evaluated explicitly. Hence, the important
role of the discrete approach using Bellman's recur-
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rence equation to get a numerical solution. For this
purpose a discrete extension of Pontryagin's theory is

used, which di�ers from standard discrete approaches
[3] due to freedom in choice of the intervals of the
state variables at a given number of stages [10,11].

8. A discrete approach using Bellman's equation or a

stage criterion

We cast the problem into the one by minimizing the

discrete function

W N �
XN
1

Aÿ10 r�xn �
ÿ
1� �un � 2

�
yn �77�

subject to the discrete constraints

yn ÿ ynÿ1

yn
� un �78�

and

xn ÿ xnÿ1

yn
� 1: �79�

The minimum resistivity function for this discrete

problem is de®ned as

Rn
ÿ
yn, xn

� � min
Xn
1

Aÿ10 r�xn �
ÿ
1� �un � 2

�
yn: �80�

The discrete Hamiltonian function is

H nÿ1 � @Rnÿ1

@ynÿ1
un ÿ Aÿ10 r�xn �

ÿ
1� �un � 2

�
: �81�

As implied by the discrete HJB equation of the

problem,

max
un

(
@Rnÿ1

@xnÿ1 �
@Rnÿ1

@ynÿ1
un ÿ Aÿ10 r�xn �

ÿ
1� �un � 2

�)
� 0

�82�
in an optimal process the Hamiltonian function has a
maximum with respect to u � dy=dx: However, follow-

ing our philosophy, instead of solving the discrete HJB
equation or a related discrete Hamilton±Jacobi
equation of the problem (see Eq. (89)), in our
approach we solve more basic discrete equations: Bell-

man's recurrence equation or a recurrence equation for
the so-called stage criterion, as those ones for which
the numerical procedures are the most e�cient.

Bellman's recurrence equation which deals with the
above minimum resistivity function has the form

Rn
ÿ
yn, xn

� � min
un , yn

n
Aÿ10 r�xn �

ÿ
1� �un � 2

�
yn

� Rnÿ1ÿyn ÿ unyn, xn ÿ yn
�o � 0:

�83�

in agreement with general recurrence equations of this
type {e.g. Eq. (84) in [12]}. This is a suitable functional

equation which should be solved numerically whenever
the speci®c resistivity function r�xn� is too complicated
to solve the problem analytically. Yet, still more gen-

eral equation

max
un, yn, x n , yn

n
Rn
ÿ
yn, xn

�ÿ Rnÿ1ÿyn ÿ unyn, xn ÿ yn
�

ÿ Aÿ10 r�xn �
ÿ
1� �un � 2

�
yn
o
� 0:

�84�

describing the so-called stage criterion can be used for

the purpose of prior evaluation of the properties of
partial derivatives of Rn, in order to exploit these
properties in further considerations. We note that:

. From the stage criterion Bellman's recurrence
equation is recovered at ®xed xn and yn: On the
other hand, when variations of the state variables

are admitted discrete characteristic sets are obtained
which govern the partial derivatives @Rnÿ1=@xnÿ1

and @Rnÿ1=@ynÿ1:
. The stationary condition for Eq. (84) with respect to

the intervals yn yields the expression which describes
vanishing 'enlarged Hamiltonian'

@Rnÿ1

@xnÿ1 �
@Rnÿ1

@ynÿ1
un ÿ Aÿ10 r�xn �

ÿ
1� �un � 2

�
� 0, �85�

where the energy-type Hamiltonian appears

H nÿ1 � @Rnÿ1

@ynÿ1
un ÿ Aÿ10 r�xn �

ÿ
1� �un � 2

�
: �86�

. The discrete HJB equation of the problem

@Rnÿ1

@xnÿ1 �max
un

(
@Rnÿ1

@ynÿ1
un ÿ Aÿ10 r�xn �

ÿ
1� �un � 2

�)
� 0

�87�
in which the partial derivatives @Rnÿ1=@xnÿ1 and

@Rnÿ1=@ynÿ1 are ®xed, yields the optimality con-
dition for the Hamiltonians with respect to un

@H nÿ1

@un
� @Rnÿ1

@ynÿ1
ÿ 2Aÿ10 r�xn �un � 0: �88�

This is the same optimality condition as that implied
by the `Caratheodory type' stage criterion, Eq. (84).

An equation of Hamilton±Jacobi type follows from
Eqs. (87) and (88) as a discrete extension of Eq. (66)

@Rnÿ1

@xnÿ1 � Aÿ10 r�xn �
0@1

4

 
@Rnÿ1

@ynÿ1

! 2

A 2
0r
ÿ2�xn � ÿ 1

1A � 0:

�89�
In view of the x-dependent resistivity r�xn�, the Hamil-
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tonian is not constant along the discrete path. How-
ever, since the process Lagrangian is independent of y,

the partial derivative @R=@y is constant along the path.
Indeed, the extremum condition for the stage criterion
(84) with respect to yn (the canonical equation for yn

in the phase space)

@Rn=@yn ÿ @Rnÿ1=@ynÿ1

yn
� ÿ@H

nÿ1

@yn
� 0

�
� pn ÿ pnÿ1

yn

� �90�

implies that in our case

@Rn

@yn
� @Rnÿ1

@ynÿ1
� . . .

@R1

@y1
� p: �91�

Note that this condition restricts the functions Rn in
the recurrence equation to be linear with respect to yn,

and allows the reduction of this equation to a one-
dimensional relationship. The condition is not a rep-
resentation of a tangent law of bending, but rather a
condition for the optimality of subsequent states, when

the controls un and yn are given. However, with the
above optimum condition, the Hamiltonian can be
written as

H nÿ1 � pun ÿ Aÿ10 r�xn �
ÿ
1� �un � 2

�
� ÿAÿ10 r�xn �

�
1� �un � 2ÿA0rÿ1�xn �pun

�
: �92�

In terms of the bending constant c � �1=2�A0p the
Hamiltonian is

H nÿ1 � ÿAÿ10 r�xn �
�
1� �un � 2ÿ2crÿ1�xn �un

�
: �93�

The condition for maximum of the Hamiltonian with
respect to un, Eq. (88) above, or

2Aÿ10 r�xn �un � 2Aÿ10 r�xn � y
n ÿ ynÿ1

xn ÿ xnÿ1 � p �94�

describes the tangent law of refraction for a discrete
thermal ray for p � 2Aÿ10 c, so that

r�xn �tan a�xn � � c: �95�
The property of constancy of @Rn=@yn allows us to
reduce the state dimensionality by eliminating y from
the set of the state variables. This is described below.

9. Reduced state space and role of transformed

resistance potentials

We introduce the Lagrange multiplier p � 2Aÿ10 c as-

sociated with the constraint describing the total change
of the variable y between the two given points (x 0, y 0)
and �xn, yn)

Xn
1

ukyk � yn ÿ y0 �96�

With the help of p, the problem can be transformed

into the one with an unspeci®ed ®nal coordinate yn,
whose value results from an accepted value of the con-
stant multiplier p � 2Aÿ10 c: In other words, it is the

freedom of the ®nal coordinate yn which yields the
condition for the Lagrange multiplier. The transformed
problem is described by the asterisk optimal function

Rn
�, a new quantity de®ned by the set of equations

Rn
�
ÿ
xn, yn, p

� � Rn
ÿ
xn, yn

�ÿ p
ÿ
yn ÿ y0

�
, �97�

@Rn
�=@x

n � @Rn=@xn �98�
and

0 � @Rn
�=@y

n � @Rn=@yn ÿ p: �99�
These equations imply the link between R� and R by

the Legendre transformation

Rn
� � Rn ÿ ÿ@Rn=@yn

�ÿ
yn ÿ y0

�
�100�

Rn � Rn
� � p

ÿ
yn ÿ y0

�
� Rn

� ÿ p@Rn
�=@p �101�

Note that it is the deviation yÿ y0 rather than the ab-
solute coordinate y which appears in the Legendre

transformation. We assume that these relations are sat-
is®ed for an arbitrary n. In view of the constraint, Eq.
(96), the transformed problem is governed by the
recurrence equation for the `stage criterion' [2,11,12].

max
un, yn, x n

n
Rn
�
ÿ
xn, p

�ÿ Rnÿ1
�
ÿ
xn ÿ yn, p

�
ÿ Aÿ10 r�xn �

�
1� �un � 2ÿpA0rÿ1�xn �un

�
yn
o
� 0

�102�
or by Bellman's recurrence equation

Rn
�
ÿ
xn, p

� � min
un, yn

n
Aÿ10 r�xn �

�
1� �un �2ÿpA0rÿ1�xn �un

�
yn

� Rnÿ1
�
ÿ
xn ÿ yn, p

�o
: �103�

which can also be investigated in an alternative form
with the control xnÿ1 instead of yn

Rn
�
ÿ
xn, p

� � min
un, yn

n
Aÿ10 r�xn �

�
�
1� �un �2ÿpA0rÿ1�xn �un

�
�xn ÿ xnÿ1 �

� Rnÿ1
�
ÿ
xnÿ1, p

�o
: �104�

Still another form uses as the parameter the integration
constant of the bending law, c,
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Rn
��xn, c� � min

un, yn

n
Aÿ10 r�xn �

�
1� �un �2ÿ2crÿ1�xn �un

�
yn

� Rÿ1� �xn ÿ yn, c�
o
: �105�

(p � 2Aÿ10 c). In view of the vanishing derivative
@Rn
�=@y

n, the asterisk Hamiltonian coincides with the
original one

H nÿ1
� � @Rnÿ1

@ynÿ1�
un ÿ Aÿ10 r�xn �

�
1� �un �2ÿpA0rÿ1�xn �un

�
� ÿ Aÿ10 r�xn �

�
1� �un �2ÿpA0rÿ1�xn �un

�
� H nÿ1 �106�

We also verify that the condition for the free extremal
control un, @H nÿ1

� =@un � 0, along with the incorpor-
ated condition for the free ®nal coordinate yn yield the

bending condition, Eq. (94) above.
Let us discuss the solution of Bellman's recurrence

equation using the algorithm in Eq. (104). Assuming a
given starting point x 0 and y 0, not necessarily the

point (0, 0), we shall see explicitly the role of the devi-
ation yÿ y0: We ®nd for n � 1

R1
�
ÿ
x 1, p

�
min

u1, y1�Dx 1

n
Aÿ10 r�x 1 �

�
�
1� �u1 �2ÿpA0rÿ1�xn �u1

�
�x 1 ÿ x 0 �

o
: �107�

This yields the stationary condition for the optimal

control u 1 in the form

2Aÿ10 r�x 1 �u1 � p �108�
which is precisely both the condition for the optimal

control, Eq. (94) for n � 1, and the c-representation of
the bending law for

p � 2Aÿ10 c: �109�
Using the optimal control

u1 � 1

2
pA0rÿ1�x 1 � �110�

in Eq. (107), the function R1
��x 1, p� is obtained as

R1
�
ÿ
x 1, p

�
�
�
Aÿ10 r�x 1 � ÿ 1

4
p 2A0rÿ1�x 1 �

�
�x 1 ÿ x 0 �:

�111�
The free coordinate y 1 follows from Eq. (110) and the
de®nition of u in terms of the multiplier p as

y1 � y0 � 1

2
A0rÿ1�x 1 �p�x 1 ÿ x 0 � �112�

This is in agreement with yn ÿ y0 � ÿ@Rn
�=@p or (when

y0 � 0� yn � ÿ@Rn
�=@p for each n.

The original function R 1 is obtained as the Legendre
transform of Rn

�, which deals with the deviation yÿ y0

rather than with an absolute value of y

R1 � R1
� � p

ÿ
y1 ÿ y0

�
� R1

� ÿ p@R1
�=@p �113�

In terms of the variables x 1 and p the procedure yields

R1
ÿ
x 1, y1

�
�
�
Aÿ10 r�x 1 � ÿ 1

4
p2A0rÿ1�x 1 �

�
�x 1 ÿ x 0 �

ÿ p@R1
�=@p

�
�
Aÿ10 r�x 1 � ÿ 1

4
p2A0rÿ1�x 1 �

�
�x 1 ÿ x 0 �

� 1

2
A0rÿ1�x 1 �p2�x 1 ÿ x 0 �

�
�
Aÿ10 r�x 1 � � 1

4
p2A0rÿ1�x 1 �

�
�x 1 ÿ x 0 �:

�114�

This corresponds to the deviation

y1 ÿ y0 � ÿ@R1
�=@p �

1

2
A0rÿ1�x 1 �p�x 1 ÿ x 0 � �115�

and the representation of p in terms of y 1

p � 2Aÿ10 r�x 1 � y1 ÿ y0

x 1 ÿ x 0
: �116�

Hence the function R 1 follows in terms of x 1 and y 1

as

R1
ÿ
x 1, y1

�
�
�
Aÿ10 r�x 1 � � 1

4
p2A0rÿ1�x 1 �

�
�x 1 ÿ x 0 �

�
 
Aÿ10 r�x 1 � � 1

4

�
2Aÿ10 r�x 1 � y1 ÿ y0

x 1 ÿ x 0

�2

� A0rÿ1�x 1 �
!
�x 1 ÿ x 0 � �117�

which can be simpli®ed into the form

R1
ÿ
x 1, y1

�
� Aÿ10 r�x 1 �

(
1�

�
y1 ÿ y0

x 1 ÿ x 0

� 2
)
�x 1 ÿ x 0 �:

�118�
For n � 2 we ®nd the function R 2

� �x 2, p� from the gen-
eral recurrence Eq. (103) as

R2
�
ÿ
x 2, p

�
� min

u2, y2

�
Aÿ10 r�x 2 �

�
1� �u2 �2ÿpA0rÿ1�x 2 �u2

�
y2

�
�
Aÿ10 r

ÿ
x 2 ÿ y2

�
ÿ 1

4
p2A0rÿ1

ÿ
x 2 ÿ y2

��
�
ÿ
x 2 ÿ y2 ÿ x 0

��
: �119�

or, in terms of x 1 as an alternative control replacing
y 2, as in Eq. (104),
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R2
�
ÿ
x 2, p

�
� min

u2, x 1

�
Aÿ10 r�x 2 �

�
1� �u2 �2ÿpA0rÿ1�x 1 �u2

�
� �x 2 ÿ x 1 � �

�
Aÿ10 r�x 1 � ÿ 1

4
p2A0rÿ1�x 1 �

�
� �x 1 ÿ x 0 �

�
�120�

We note that for each of these equations the extremum
condition with respect to u 2 takes the form of that
obtained for n � 1, but the indices correspond now

with n � 2

2Aÿ10 r�x 2 �u 2 � p
ÿ � 2Aÿ10 c

�
: �121�

Substituting the resulting optimal control

u 2 � 1

2
pA0rÿ1�x 2 � �122�

into Eq. (120), the function R 2
� �x 2, p� follows from the

condition

R2
�
ÿ
x 2, p

�
� min

x 1

��
Aÿ10 r�x 2 � ÿ 1

4
p2A0rÿ1�x 2 �

�

� �x 2 ÿ x 1 � �
�
Aÿ10 r�x 1 �

ÿ 1

4
p2A0rÿ1�x 1 �

�
�x 1 ÿ x 0 �

�
�123�

in which extremizing is with respect to the intermediate

state x 1 only, for ®xed states x 0 and x 2. The condition
for optimality of x 1 yields an equation�
Aÿ10 r�x 1 � ÿ 1

4
p2A0rÿ1�x 1 �

�
ÿ
�
Aÿ10 r�x 2 � ÿ 1

4
p2A0rÿ1�x 2 �

�
�
�
Aÿ10 dr�x 1 �=dx 1 ÿ 1

4
p2A0 drÿ1�x 1 �=dx 1

�
� �x 1 ÿ x 0 � � 0: �124�

which is characteristic of only the discrete processes. It
de®nes the optimal interstage coordinate x 1 in terms of

given coordinates x 0 and x 2, and for an arbitrary
speci®c resistivity it should be solved numerically.
Alternatively a direct minimizing of the braces ex-

pression in Eq. (123) with respect to x 1 should be per-
formed.
Summing up the above results we conclude that,

with the bending law incorporated, the procedure ®nd-
ing the sequence of optimal functions Rn

� is broken
down to the optimization of the sum

Rn
�
ÿ
xn, p

� � min
fx kÿ1 g

Xn
k�1

��
Aÿ10 r�xk �

ÿ 1

4
p 2A0rÿ1�xk �

�
�xk ÿ xkÿ1 �

�
�125�

with the interstage states xkÿ1 as only controls. The

®nal recurrence equation is

Rn
�
ÿ
xn, p

� � min
x nÿ1

��
Aÿ10 r�xn � ÿ 1

4
p 2A0rÿ1�xn �

�

��xn ÿ xnÿ1 � � Rnÿ1
�
ÿ
xnÿ1, p

��
�126�

This equation should be applied for n � 2, 3 . . .N
using the one-stage function de®ned as

R1
�
ÿ
x 1, p

�
�
�
Aÿ10 r�x 1 � ÿ 1

4
p 2A0rÿ1�x 1 �

�
�x 1 ÿ x 0 �:

�127�
The optimal results for the next stages are obtained

numerically with the help of Eqs. (126) and (127). The
optimal interstage coordinate xnÿ1 satis®es an equation

Aÿ10 r�xn � ÿ 1

4
p 2A0rÿ1�xn � � dRnÿ1ÿxnÿ1, p

�
dxnÿ1 : �128�

from which tabular data xnÿ1�xn� can be obtained via

a numerical procedure. Most often, however, a direct
minimizing of the braces expression in Eq. (126) with
respect to xnÿ1 is performed.

10. Limiting transition to continuous potentials

In a continuous process, the limiting function
R��x, p� is an integral

R��x, p� �
�x
x 0

�
Aÿ10 r�x 0 � ÿ 1

4
p 2A0rÿ1�x 0 �

�
dx 0:

�129�
Its potential property is obvious, even for variable
speci®c resistivity.
The original resistivity potential (without asterisk) is

the Legendre transform of the above function with

respect to p. In terms of the variables p and x

R�x, p� � R� � p
ÿ
yÿ y0

�
� R� ÿ p@R�=@p

�
�x
x 0

Aÿ10 r�x 0 � dx 0 � 1

4
p2
�x
x 0

A0rÿ1�x 0 � dx 0

�130�
or, in terms of c and x,

R�x, c� � Aÿ10

� �x
x 0

r�x 0 � dx 0 � c 2
�x
x 0

rÿ1�x 0 � dx 0
�
:

�131�
Using in the above integral the relationship
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yÿ y0 � ÿ@R�=@p �
�x
x 0

1

2
pA0rÿ1�x 0 � dx 0 �132�

in the form

p � 2Aÿ10

ÿ
yÿ y0

�� �x
x 0

rÿ1�x 0 � dx 0
�ÿ1 ÿ � 2Aÿ10 c

�
�133�

the original function R�x, y� is obtained as

R�x, y� �
�x
x 0

Aÿ10 r�x 0 � dx 0 � 1

4

h
2Aÿ10

ÿ
yÿ y0

�i2
�
��x

x 0

rÿ1�x 0 � dx 0
�ÿ2�x

x 0

A0rÿ1�x 0 � dx 0

�
�x
x 0

Aÿ10 r�x 0 � dx 0 � Aÿ10

ÿ
yÿ y0

�2
�
��x

x 0

rÿ1�x 0 � dx 0
�ÿ1

�134�

This function constitutes the solution to the continu-
ous Hamilton±Jacobi equation, Eq. (66). The present
form of R�x, y� is the most useful as it does not con-
tain the bending constant c or the related constant p.

Note that each numerical solution to recurrence Eq.
(83) for ®nite number of stages n represents a ®nite-
stage generalization of the solution (134); this numeri-

cal solution automatically accomplishes the numerical
integration contained in Eq. (134).
Yet an equivalent form, referred to a `mixed rep-

resentation', can be obtained

R�x, y, p� �
�x
x 0

Aÿ10 r�x 0 � dx 0 � 1

4
p
ÿ
yÿ y0

�
� Aÿ10

� �x
x 0

r�x 0 � dx 0 � 1

2
c
ÿ
yÿ y0

��
� R�x, y, c� �135�

Equivalence of dynamic programming solutions, Eqs.
(130) and (134) or (135), (70) obtained earlier by the
method of separation of variables should be shown.

Indeed, for c � �1=2�A0p, Eq. (70) agrees with the
Legendre transformation of Eq. (129) contained in Eq.
(130)

R�x, y, c� � Aÿ10

�
2c
ÿ
yÿ y0

�
�
�x
x 0

�
r�x 0 �

ÿ rÿ1�x 0 �c 2
�

dx 0
�

� p
ÿ
yÿ y0

�
� Aÿ10

�x
x 0

r�x 0 � dx 0

ÿ 1

4
A0p

2

�x
x 0

rÿ1�x 0 � dx 0

�
�x
x 0

Aÿ10 r�x 0 � dx 0

� 1

4
p 2

�x
x 0

A0rÿ1�x 0 � dx 0

� R�x, p�: �136�

Let us consider now a special case when the speci®c

resistivity is independent of x. The conditions (124)
and (128) are then satis®ed for an arbitrary x 1 and
xnÿ1 which means that the discrete decision problem

degenerates in this case. This is because the extremals
are then straight lines and the magnitude of intervals
yn does not in¯uence the value of the braces expression

in Eq. (123) above. This conclusion is valid for larger
n as well. As it follows from Eq. (123), the function
R 2
� �x 2, p� equals in this special case

R 2
�
ÿ
x 2, p

�
�
�
Aÿ10 rÿ 1

4
p 2A0rÿ1

�
�x 2 ÿ x 0 � �137�

and we can easily ®nd the general result

Rn
�
ÿ
xn, p

� � �Aÿ10 rÿ 1

4
p 2A0rÿ1

�
�xn ÿ x 0 � �138�

which holds only for a constant speci®c resistivity r:
Its continuous limit is

R��x, p� �
�
Aÿ10 rÿ 1

4
p 2A0rÿ1

�
�xÿ x 0 � �139�

This corresponds to thermal rays as straight lines. The

original resistivity function is the Legendre transform
of the asterisk function. In terms of the variables p
and x

Rn
ÿ
xn, p

� � Rn
� � p

ÿ
yn ÿ y0

�
� Rn

� ÿ p@Rn
�=@p

�
�
Aÿ10 r� 1

4
p 2A0rÿ1

�
�xn ÿ x 0 �: �140�

We can now use an integral form of Eq. (132)

yn ÿ y0 � @Rn
�=@p �

1

2
A0rÿ1p�xn ÿ x 0 � �141�

to obtain
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p � 2Aÿ10 r
yn ÿ y0

xn ÿ x 0
: �142�

After substituting the above result into Eq. (140), the
original function Rn�xn, yn� is obtained in terms of xn

and yn as

Rn
ÿ
xn, yn

� � Aÿ10 r

(
1�

�
yn ÿ y0

xn ÿ x 0

� 2
)
�xn ÿ x 0 �:

�143�
In the limiting continuous process, the constant resis-

tivity solution is represented by

R�x, y� � Aÿ10 r

(
1�

�
yÿ y0

xÿ x 0

� 2
)
�xÿ x 0 �: �144�

This corresponds to the bundle of rectilinear rays with
various constant u � dy=dx:
Application of this theory to composites should be

underlined, especially when they are designed and yn:
Yet, for ready or existing composites yn are con-
strained. The corresponding theory can be found in
[12].
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